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Streaming dataflow requires frequent reconfigurations

State management disaggregation with lazy migration

Case 1: In-flight event reaches w1

�� E is owned by w3

�� w3 processes E

�� w3 processes E

�� w1 pushes it to w3
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State migration Cases for step      :

Steps for a scale-up example:
Start transition In transition Finish transition

u1 u1 u1

u2 u2 u2

w1 w1 w1
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Streaming workloads are long-running, dynamic, and often 

unpredictable, eventually leading any initial configuration 

out-of-tune. Frequent reconfiguration is required�

� Rescale upon input rate changes, data skew etc.�

� Task migration when original host is prohibited.

Existing mechanisms for reconfigurations�

� Stop-and-restart: Dataflow needs to pause execution to 

drain in-flight data before applying the reconfiguration�

� State migration: Stateful operator stores state locally for 

high-performance stateful processing. State migration is 

required during reconfigurations.

Each task is responsible

for a disjoint partition of

keys - data parallelism

Require block and wait

during scale-up

- cause cascading effect
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Towards a zero-downtime reconfiguration mechanism

Start w3 and build connections

to both its upstreams and peers

w3 accepts watermarks and

records from both upstreams and peers

Finalize reconfiguration and

remove peer-to-peer channels

u1

u2

w1

w2

w3

Case 2: New event reaches w3

�� E arrives w3 but its state is not present

�� w3 pulles state from 
w1 which owns E 
originally
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�� w3 processes 

the window

Case 3: w1 timer triggers windows

�� w1 triggers a window 
that belongs to w3
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Remote state (e.g. OSS/HDFS/S3)
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Limitations of existing approach: 

� Blocking is required to flush state and ensure the correctness�

� Modern streaming engines use local (e.g. Flink) or remote (e.g. 

Millwheel) storage as state backend with various tradeoffs. Both 

require draining in-flight data.

System downtim� Local state syste�

� Pros: Low latency state access 

with simplified execution model. 

High performance�

� Cons: State migration overhead. 

Limited local storage capacity. 

High fault tolerance overhead.

Remote state system


- Pros: State migration not needed. 

High resource efficiency by scaling 

compute and storage separately. 


- Cons: High latency state access. 

Long data draining time to flush 

local cache.

Goal: design non-blocking mechanisms to 

flexibly and efficiently apply reconfigurations

1. Apply reconfiguration decision without system downtime


2. Hybrid state access to get the benefits of both local and remote storage

Figure: system downtime for a simple rescale case - re-partition key space and scale 
up the stateful operator from 2 to 3 replicas. State migration ≈ 10GB data. 

Steps to scale up and re-partition keys in w2

Key idea - �

� Introduce  to decouple state 

management from the dataflow�

� Freely apply reconfiguration and update dataflow 

topology without concerning state�

� State service is responsible for ensuring the state 

correctness by 

.

State management disaggregation

State Service

maintaining channels between 

replicas of the same stateful operator to flexibly 

and lazily transfer state during runtime

�� w1 pushes 
state to w3


