
Zero-downtime reconfiguration mechanisms
for dynamic data stream processing

Zikun Wang, Yuanli Wang, Lei Huang, Sakshi Sharma, John Liagouris, Vasiliki Kalavri {zikunw, yuanliw, lei, phsakshi, liagos, vkalavri}@bu.edu

Complex Analytics & Scalable Processing (CASP) Research Lab at Boston University

https://sites.bu.edu/casp/

Streaming dataflow requires frequent reconfigurations

State management disaggregation with lazy migration

Case 1: In-flight event reaches w1

�� E is owned by w3

�� w3 processes E

�� w3 processes E

�� w1 pushes it to w3

42 40

39

39

41

E

E Event

State

ORE ES

S

State migration Cases for step :

Steps for a scale-up example:
Start transition In transition Finish transition

u1 u1 u1

u2 u2 u2

w1 w1 w1

w2 w2 w2

w3 w3 w3

42 40

3941

42 40

39

39

41

Events

Watermarks

43

42

42

44

43

Streaming workloads are long-running, dynamic, and often

unpredictable, eventually leading any initial configuration

out-of-tune. Frequent reconfiguration is required�

� Rescale upon input rate changes, data skew etc.�

� Task migration when original host is prohibited.

Existing mechanisms for reconfigurations�

� Stop-and-restart: Dataflow needs to pause execution to

drain in-flight data before applying the reconfiguration�

� State migration: Stateful operator stores state locally for

high-performance stateful processing. State migration is

required during reconfigurations.

Each task is responsible

for a disjoint partition of

keys - data parallelism

Require block and wait

during scale-up

- cause cascading effect

w1
K1

w3
K3

w2

u1

u2

u2

u1

K2
K3

w2
K2
K3

1020

20

20

20

30

K3
15

K2
17

K2
19

K2
18

K2
25 K3

22

K3
21

K2
24

K3
31

K2
17watermark K2 record w. timestamp 17

Time window [10, 20]

trigger the window

... ...

1020
K3
11

K3
15
K2
13

K3
15
K3
16

K2
14

Pause Drain data State migration

Barrier

Barrier

Resume

Towards a zero-downtime reconfiguration mechanism

Start w3 and build connections

to both its upstreams and peers

w3 accepts watermarks and

records from both upstreams and peers

Finalize reconfiguration and

remove peer-to-peer channels

u1

u2

w1

w2

w3

Case 2: New event reaches w3

�� E arrives w3 but its state is not present

�� w3 pulles state from
w1 which owns E
originally

42 40

39

39

41

E
E

Event

State

S

S

u1

u2

w1

w2

w3
�� w3 processes

the window

Case 3: w1 timer triggers windows

�� w1 triggers a window
that belongs to w3

42 40

39

39

41

E Event

State

S

S

u1

u2

w1

w2

w3

Remote state (e.g. OSS/HDFS/S3)

w1

<k,v>

Put/Get

Host

w1
Host

Disk
K1

w2
Host

w2

<k,v>

Put/Get
Put/GetPut/Get

Host
Disk

K2

K3 K2

K1

K3

Local state Remote state

Limitations of existing approach:

� Blocking is required to flush state and ensure the correctness�

� Modern streaming engines use local (e.g. Flink) or remote (e.g.

Millwheel) storage as state backend with various tradeoffs. Both

require draining in-flight data.

System downtim� Local state syste�

� Pros: Low latency state access

with simplified execution model.

High performance�

� Cons: State migration overhead.

Limited local storage capacity.

High fault tolerance overhead.

Remote state system

- Pros: State migration not needed.

High resource efficiency by scaling

compute and storage separately.

- Cons: High latency state access.

Long data draining time to flush

local cache.

Goal: design non-blocking mechanisms to

flexibly and efficiently apply reconfigurations

1. Apply reconfiguration decision without system downtime

2. Hybrid state access to get the benefits of both local and remote storage

Figure: system downtime for a simple rescale case - re-partition key space and scale
up the stateful operator from 2 to 3 replicas. State migration ≈ 10GB data.

Steps to scale up and re-partition keys in w2

Key idea - �

� Introduce to decouple state

management from the dataflow�

� Freely apply reconfiguration and update dataflow

topology without concerning state�

� State service is responsible for ensuring the state

correctness by

.

State management disaggregation

State Service

maintaining channels between

replicas of the same stateful operator to flexibly

and lazily transfer state during runtime

�� w1 pushes
state to w3

