
Abstract

Runtime Architecture

Benchmarks and Metrics Collection

Special

Thanks

Results

Lazy State Migration Strategy

By Zikun Wang, advised by John Liagouris
D e p a r t m e n t o f C o m p u t e r S c i e n c e

State-of-the-art stream processors partition data across nodes in the cluster to enable data-parallel processing. To keep up with workload changes, we often need to
scale out the system by adding more nodes. However, adding (or removing) nodes requires re-partitioning the system state, which in turn requires efficient data
movement between machines at runtime. Existing state migration strategies either incur large overhead on steady state or require system downtime. In this project,
we propose a streaming system capable of auto-scaling with zero downtime and minimal overhead on steady state by implementing a novel state migration design
that decouples compute and storage. In our design, when a new machine is added to the system while it is running, the system state is lazily fetched only when the
machine requires it, effectively treating the old workers as external storage. We implemented most of the system runtime (e.g., metric collection, watermark
propagation) and the baseline migration strategies over the summer. Our system performs well compared to streaming systems like Flink[1] and Storm[2]. In the
future, we aim to complete the implementation and optimization of our hybrid state migration technique and compare it with state-of-the-art approaches. 

To understand the performance of our runtime, we ran benchmarks on cloud machines on
platforms such as Chameleon[6] and CloudLab[7], then record the average throughput and tail
latency. We developed a metric collection package in Go to achieve this, as well as support analyzing
metrics in Prometheus[8] in real-time for debugging purposes.

This project was made possible thanks to my professors, John Liagouris
and Vasia Kalavri. Their guidance has been crucial in helping me
navigate the complexities of distributed systems.

I am also deeply grateful to PhD students Yuanli Wang, Lei Huang, and
the other wonderful members of the CASP Lab. They provided immense
help and support during my most challenging times.

We designed a lazy state migration during scaling. The key idea is the new workers will effectively
treat the old workers as external storage. After fetching the corresponding key value pairs from the
old workers, the new workers will also gain the ownership of the data, completing the state
migration.

To verify the scaling behavior and performance of our base runtime, we ran the following
experiment on CloudLab machines. Each machine has two Intel Xeon Silver 4114 10-core CPUs at
2.20 GHz (40 threads in total), 192GB DDR4 memory, and 480GB SATA SSD. For each experiment, we
use a simple source->map->sink query (source->counter->sink for stateful experiments). We fixed the
number of sources and sinks, and varies the number of maps/counters. In the end, we record the
throughputs and tail latencies.

For experiment running on multiple machines,
we placed all the sources on one node, all the
sinks on one node, and split the counters on
two nodes. (Each worker uses two threads)

We achieved high throughput with our runtime
with good scaling behavior when increasing
the available physical resources.

[1] Apache Flink: State Backend. https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/
ops/state/state_backends/. Last access: Sep 2024.

[2] Apache Storm. https://storm.apache.org/. Last access: Sep 2024.

[3] gRPC. https://grpc.io/. Last access: Sep 2024.

[4] PebbleDB on Github. https://github.com/cockroachdb/pebble. Last access: Sep 2024.

[5] TiKV. https://tikv.org/. Last access: Sep 2024.

[6] Chaemelon Cloud: https://www.chameleoncloud.org/. Last access: Sep 24.

[7] CloudLab. https://www.cloudlab.us/. Last access: Sep 2024.

[8] Prometheus. https://prometheus.io/. Last access: Sep 2024.

For experiment running on multiple machines,
we placed all the sources on one node, all the
sinks on one node, and split the counters on
two nodes. (Each worker uses two threads)

We achieved high throughput with our runtime
with good scaling behavior when increasing
the available physical resources.

We developed a distributed streaming processor
runtime in Go from the ground up, with gRPC
library for our networking.

The processing model is similar to Flink. For each
cluster, we have one coordinator and multiple
workers (possibly run on different machines). The
user will create a dataflow query locally using our
client API, and then submit the query to the
coordinator. The coordinator will deploy the
abstract query plan to the registered workers.

For each worker, when getting assigned to a
stateful job (like counter), the user has the ability
to choose between local storage (in-memory or
PebbleDB[4]) or remote storage (connecting to a
TiKV[5] cluster).

Figure 1. Using hybrid state migration strategy to reduce
latency spike during system re-configurations.

Figure 2. Generating dataflow typology through our user
query API.

Figure 3. Mapping abstract dataflow to physical plans that
we can deploy to workers.

Figure 4. Runtime overview.

Figure 7. What happens during a scale up using the lazy state migration strategy.

Figure 8. Stateless experiment on a single node machine. Figure 9. Stateful experiment on a single machine.

Figure 10. Stateful experiment on multiple machines.

References

q := query.NewQuery().

		Source("source", 1, "./plugins/source_infinite_1m.so").

		Map("map", 2, "./plugins/map_increment.so").

		Sink("sink", 1, "./plugins/sink_storage.so").

		Connect("source", "map", "random").

		Connect("map", "sink", "hash")

1 2 2

source

round-robin hash

map sink

1 2 2

source map sink

source

map_1

map_2

sink_1

sink_2

Abstract

Dataflow

Physical

Dataflow

 Submit quer
 Control Runtime

 Status updat
 Get metrics

Generate physical plan

and deploy to workers

Collect metrics OR report to Prometheus.

Client API library Coordinator Worker 1 Worker 3

...
Worker 2

Metric

Collector

q := query.NewQuery().

		Source("source", 1, "./plugins/source_infinite_1m.so").

		Map("map", 2, "./plugins/map_increment.so").

		Sink("sink", 1, "./plugins/sink_storage.so").

		Connect("source", "map", "random").

		Connect("map", "sink", "hash")

Network: gRPC

Storage Layer

Runtime logic

Map UDF

Network: gRPC

Storage Layer

Runtime logic

Source UDF

Network: gRPC

Storage Layer

Runtime logic

Window UDF

Figure 6. Analyze throughput and latency information
through Prometheus in real-time.

Figure 5. Metrics collection package API initialization.

Step 1. Initiate Scaling Step 2. Stage new workers Step 3. Propagate changes

Step 4. State fetching for new stateful workers.

Coordinator

Coordinator

New worker

(counter 2)

Now is in charge
of key C

Old worker

(counter 1)

Used to in charge
of key C

Workers

source -> filter -> counter -> sink

Scaling controller starts the

scaling process

Coordinator

Workers

source -> filter -> counter -> sink

Coordinator stages new workers

for the scaling

Existing

Planned

Coordinator

Workers

source -> filter -> counter -> sink

Coordinator sends watermarks

to propagate topology changes.

Watermark

(control message)

KEY : LOCATION
A : counter_1
B : counter_1
C : counter_1

......

 Ask key location

 Return key location
 Request key state

 Flush and give up key
 Update ownership

Effective Workflow Auto-Scaling in

Streaming System.

We are keep developing our runtime, adding more features and
improving its performance, especially in areas such as better
network management and buffer management. In the same time,
we are working on improving the lazy fetch approach, solving the
performance issues we observed in our initial demo.

Future Work

